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Tools to reliably measure Plasmodium falciparum (Pf) exposure in
individuals and communities are needed to guide and evaluate
malaria control interventions. Serologic assays can potentially pro-
duce precise exposure estimates at low cost; however, current
approaches based on responses to a few characterized antigens
are not designed to estimate exposure in individuals. Pf-specific
antibody responses differ by antigen, suggesting that selection of
antigens with defined kinetic profiles will improve estimates of Pf
exposure. To identify novel serologic biomarkers of malaria expo-
sure, we evaluated responses to 856 Pf antigens by protein micro-
array in 186 Ugandan children, for whom detailed Pf exposure data
were available. Using data-adaptive statistical methods, we identi-
fied combinations of antibody responses that maximized informa-
tion on an individual’s recent exposure. Responses to three novel Pf
antigens accurately classified whether an individual had been in-
fected within the last 30, 90, or 365 d (cross-validated area under
the curve= 0.86–0.93), whereas responses to six antigens accurately
estimated an individual’s malaria incidence in the prior year. Cross-
validated incidence predictions for individuals in different commu-
nities provided accurate stratification of exposure between popula-
tions and suggest that precise estimates of community exposure can
be obtained from sampling a small subset of that community. In
addition, serologic incidence predictions from cross-sectional sam-
ples characterized heterogeneity within a community similarly to 1 y
of continuous passive surveillance. Development of simple ELISA-
based assays derived from the successful selection strategy outlined
here offers the potential to generate rich epidemiologic surveillance
data that will be widely accessible to malaria control programs.
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Many countries have extensive programs to reduce the bur-
den of Plasmodium falciparum (Pf), the parasite responsi-

ble for most malaria morbidity and mortality (1). Effectively
using limited resources for malaria control or elimination and
evaluating interventions require accurate measurements of the
risk of being infected with Pf (2–15). To reflect the rate at which
individuals are infected with Pf in a useful way, metrics used to
estimate exposure in a community need to account for dynamic
changes over space and time, especially in response to control
interventions (16–18).
A variety of metrics can be used to estimate Pf exposure, but

tools that are more precise and low cost are needed for pop-
ulation surveillance. Existing metrics have varying intrinsic levels

of precision and accuracy and are subject to a variety of extrinsic
factors, such as cost, time, and availability of trained personnel
(19). For example, entomological measurements provide infor-
mation on mosquito to human transmission for a community but
are expensive, require specially trained staff, and lack standardized
procedures, all of which reduce precision and/or make interpre-
tation difficult (19–22). Parasite prevalence can be measured by
detecting parasites in the blood of individuals from a cross-sec-
tional sample of a community and is, therefore, relatively simple
and inexpensive to perform, but results may be imprecise, espe-
cially in areas of low transmission (19, 23), and biased by a number
of factors, including immunity and access to antimalarial treat-
ment (5, 6, 19, 23–25). The burden of symptomatic disease in a
community can be estimated from routine health systems data;
however, such data are frequently unreliable (5, 26–28) and gen-
erally underestimate the prevalence of Pf infection in areas of
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intense transmission. Precise and quantitative information about
exposure at an individual level can be reliably obtained from co-
hort studies by measuring the incidence of asymptomatic and/or
symptomatic Pf infection (i.e., by measuring the molecular force of
infection) (29–35). Unfortunately, the expense of cohort studies
limits their use to research settings. The end result is that most
malaria-endemic regions lack reliable, timely data on Pf exposure,
limiting the capabilities of malaria control programs to guide and
evaluate interventions.
Serologic assays offer the potential to provide incidence esti-

mates for symptomatic and asymptomatic Pf infection, which are
currently obtained from cohort studies, at the cost of cross-sec-
tional studies (36–38). Although Pf infections are transient, a
record of infection remains detectable in an individual’s antibody
profile. Thus, appropriately chosen antibody measurements in-
tegrated with age can provide information about an individual’s
exposure history. Antibodies can be measured by simple ELISAs
and obtained from dried blood spots, which are easy to collect,
transport, and store (39–41). Serologic responses to Pf antigens
have been explored as potential epidemiological tools (42–45),
and estimated rates of seroconversion to well-characterized Pf
antigens accurately reflect stable rates of exposure in a com-
munity, whereas distinct changes in these rates are obtained from
successful interventions (22, 39, 41, 46–53). However, current
serologic assays are not designed to detect short-term or gradual
changes in Pf exposure or measure exposure to infection at an
individual level. The ability to calibrate antibody responses to
estimates of exposure in individuals could allow for more flexible
sampling of a population (e.g., not requiring age stratification),
improve accuracy of exposure estimates from small sample
sizes, and better characterize heterogeneity in exposure within a
community.
Different Pf antigens elicit antibody responses with different

magnitudes and kinetics, providing a large and diverse set of
potential biomarkers for exposure (38, 54–58). We hypothesized
that new and more highly informative serologic biomarkers
better able to characterize an individual’s recent exposure history
could be identified by analyzing antibody responses to a large
number of candidate Pf antigens in participants with well-char-
acterized exposure histories. To test this hypothesis, we probed
plasma from participants in two cohort studies in Uganda against
a protein microarray containing 856 Pf antigens. The primary
aim of this analysis was to identify responses to select antigens
that were most informative of recent exposure using robust, data-
adaptive statistical methods. Each participant’s responses to
these selected antigens were used as predictors for two primary
outcomes of their recent exposure to Pf: (i) days since last Pf
infection and (ii) the incidence of symptomatic malaria in the

last year. These individual-level estimates were then aggregated
across a population to assess community-level malaria exposure.
The selection strategy presented here identified accurate bio-
markers of exposure for children living in areas of moderate to
high Pf exposure and illustrates the utility of this flexible and
broadly applicable approach.

Results
Study Populations and Clinical Outcomes. Participants consisted of
186 children from cohort studies in two districts of Uganda:
Kanungu, where transmission is moderate (annual entomological
inoculation rate = 27), and Tororo, where transmission is intense
(annual entomological inoculation rate = 125) (59). All partici-
pants were followed by active and passive surveillance for at least
1 y before the collection of the plasma samples analyzed here,
allowing evaluation of recent exposure. Consistent with the
higher intensity of Pf exposure in Tororo, 95% of participants
from this site were infected with Pf in the last year, whereas only
64% of Kanungu participants had an infection detected (Table
1). Tororo participants had, on average, a higher incidence of
malaria in the last year (median = 7.8 episodes per person-year)
than participants from Kanungu (median = 1.1 episodes per
person-year). Similarly, among participants who had a Pf infection
detected in the previous year, participants from Tororo were more
recently infected with Pf (median = 28 d before the date of plasma
collection) than those living in Kanungu (median = 264 d).

Pf-Specific Antibody Profiles Showed Decreased Responses with
Increased Days Since Infection. Of 856 Pf antigen probes on the
microarray, 655 met the minimal antibody reactivity criteria for
inclusion (Dataset S1). Recent infection with Pf was associated
with greater breadth and intensity of response [P < 0.001 for
Spearman’s correlations between both breadth (r = −0.72) and
intensity (r = −0.52) and days since last infection]. Notably, the
overall breadth and intensity of anti-Pf antibody responses were
comparable between the two sites among participants whose days
since last Pf infection were similar (Fig. 1). As such, data from
both sites were combined for all subsequent analyses. Visualiza-
tion of individual participants’ antibody profiles across sites
showed increased antibody reactivity in participants who were
more recently infected (Fig. 2). Linear regression showed that
mean antibody response decreased significantly over time after Pf
infection (R2 = 0.23, P < 0.001), consistent with published findings
(57, 58, 60–66).

Antibody Responses Most Predictive of an Individual’s Exposure to Pf.
To identify antibody responses to Pf antigens that were most in-
formative of an individual’s recent exposure to Pf, a flexible pre-
diction method that made few assumptions about the nature of the

Table 1. Descriptive statistics of the study sites and participants

Characteristic Kanungu Tororo

No. of participants 107 79
Median age, y (range) 5.2 (3.1–6.8) 4.0 (3.9–4.4)
Female sex (%) 51 42
Median monthly female Anophelene counts per household, n (range) 2 (0–29) n/a
Median malaria incidence in the last year, ppy (range) 1.1 (0.0–8.5) 7.8 (0.0–19.0)
Parasitemic at time of sample collection, n (%) 9 (8) 13 (16)
Median Pf density at time of sample collection* (range) 12,800 (64–68,240) 53,340 (2,880–247,700)
Participants having at least one infection in the last 30 d, n (%) 20 (19) 43 (54)
Participants having at least one infection in the last 90 d, n (%) 37 (35) 64 (81)
Participants having at least one infection in the last 365 d, n (%) 69 (64) 75 (95)
Median days since last Pf infection† (range) 264 (0–340) 28 (0–332)

n/a, not available; ppy, per person-year.
*Only participants who were parasitemic at the time of sample collection were included.
†Only participants who had at least one Pf infection recorded in the previous year were included.
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relationship between Pf exposure and antibody intensity (details
in Materials and Methods) was used to algorithmically identify top
candidate antigens and model the ability of responses to the se-
lected antigens to predict exposure. Our goal was to identify Pf
antigens inducing antibody responses that combined produced
the best predictions of an individual’s (i) days since last Pf in-
fection and (ii) incidence of symptomatic malaria in the last year.
To ensure unbiased estimates of prediction accuracy, the entire
process—including antibody selection and model selection and
fitting—was automated and cross-validated. In other words, for
every participant, predicted exposure was calculated based on
choosing antibody responses and fitting their relationship to
exposure in other participants, resulting in a conservative esti-
mate of prediction accuracy.
Although the microarray approach used in this study allowed

us to screen responses to a large number of Pf antigens, ideally,
information regarding exposure could be generated from re-
sponses to a limited number of antigens. To determine the
tradeoff between the number of responses measured and the
accuracy in predicting an individual’s prior exposure, we evalu-
ated R2 values when allowing the model to select between 1 and
30 antibody responses measured as either continuous (antibody
intensity) or binary (reactive vs. nonreactive) variables (Fig. 3).
Because microscopy is often performed during cross-sectional
surveys, we evaluated the information serology provided in ad-
dition to whether the participant had parasites detectable by
microscopy at the time of sampling. Microscopy together with
continuous antibody responses to a single selected antigen
explained more than 60% of the variance in predicting days since
an individual was last infected, whereas data from microscopy
alone explained only 20% of the variance (Fig. 3). Microscopy
together with continuous responses to three antigens explained
66% of the variance, and only marginal improvements in pre-
diction accuracy were obtained when responses to additional an-
tigens were included. When dichotomized, responses to a single
antigen provided less information than those based on continuous
measurements, but this loss of information could be compensated
for by adding additional antigens; prediction accuracy was
similar for continuous and binary data after responses to at least
20 antigens were included. Randomly selected dichotomized
antibody responses also provided information but not nearly as
efficiently, with continuous responses to 1 algorithmically se-

lected antigen providing more accurate predictions than binary
responses to 30 randomly selected antigens. Predicting the in-
cidence of symptomatic malaria in the prior year using data on
participants’ age combined with responses to increasing numbers
of Pf antigens produced analogous results, although binary and
continuous responses to selected antigens provided similar in-
formation, and maximum accuracy was not reached until six
responses were included. Together, these data indicate that ac-
curate predictions of an individual’s recent exposure to malaria
can be obtained from measuring antibody responses to a small
number of selected antigens.
Responses to the top antigens selected for predicting both

exposure metrics in individuals were generally high and followed
the expected trend (P < 0.001 for Spearman’s correlation be-
tween both exposure metrics and mean intensity of responses to
the top 10 antigens) of increased intensity in participants with
higher exposure (Fig. 4 and Figs. S1 and S2); 6 of the top 10
responses identified as most predictive of days since last in-
fection were also identified as highly predictive of malaria in-
cidence (Table 2), which is not surprising given that these two
metrics of exposure are closely related. Of note, among re-
sponses commonly used in the past to evaluate an individual’s
exposure [apical membrane antigen 1 (AMA1), merozoite sur-
face protein 1 (MSP1), MSP2, and circumsporozoite protein
(CSP)] (37, 40, 66–69), none were within the top 10 responses
predictive of days since infection in this setting, and only MSP2
and CSP were within the top 10 responses predictive of malaria
incidence in our participants. Additional characteristics of pro-
teins targeted by the most informative antibody responses are
provided in Tables S1 and S2.

Accuracy of Selected Responses in Predicting Exposure in Specific
Cases. One valuable way a serologic assay could be used by a
malaria control program would be to determine whether in-
dividuals had been infected with Pf in the recent past. To in-
vestigate the ability of selected antibody responses to correctly
classify an individual as being infected within the last 30, 90, or
365 d, we compared each individual’s actual infection status in
that timeframe with cross-validated predictions of days since in-
fection using microscopy and continuous responses to three an-
tigens. Receiver operating characteristic (ROC) curves showed

Fig. 1. Breadth and intensity of antibody responses decrease with days
since infection. Breadth of response for each participant was calculated as
the percentage of antibody responses that were reactive (at least 2 SDs
above malaria-naïve controls) to 655 included Pf antigens. Mean intensity
for each participant was calculated from normalized intensities of antibody
responses. Breadth of responses did not significantly differ between partic-
ipants from the two sites after stratified by days since infection, although
participants from Tororo were, on average, more recently infected. Intensity
of responses also did not differ, except for in participants who were not
infected with Pf within the last year (P = 0.008, Mann–Whitney test with
Bonferroni correction).

Fig. 2. Heat maps of intensities of antibody responses to all 655 reactive Pf
antigens show that responses are generally higher in participants who were
most recently infected. Among participants who did not have an infection
detected in the year before sample collection, the oldest participants had
higher overall responses.
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that measuring these responses accurately classified recent in-
fection status for all three timeframes (Fig. 5) (cross-validated
area under the ROC curve ranged from 0.86 to 0.93). Because
selection of responses was cross-validated, the responses measured
in each participant were selected in a different group of in-
dividuals, and there was some stochastic variation in which three
responses were used for predictions in any given participant. This
variation allowed for unbiased and generalizable estimation of
prediction accuracy, and selection closely followed the ranking in
Table 2. Similar results were obtained when linear models that
included microscopy and responses to the top three antigens
(PF3D7_1002000, PF3D7_0402400, and PF3D7_1106300) as pre-
dictors were used to estimate days since an individual was last in-
fected (Fig. 5).
Accurate predictions of recent exposure for multiple in-

dividuals obtained from serology can be aggregated to estimate
average recent exposure in a community. Taking the average of
cross-validated predictions of malaria incidence for each indi-
vidual from Kanungu or Tororo, which were obtained by mea-
suring continuous responses to six antigens at a single time point,
was an excellent indicator of observed incidence in the last year
at that site (predicted vs. actual cases per person-year were 1.1
[95% confidence interval (95% CI) = 0.9–1.3] vs. 1.5 [95% CI =
1.1–1.8] in Kanungu and 5.4 [95% CI = 4.8–5.9] vs. 7.1 [95% CI =
6.1–8.0] in Tororo). To extrapolate the potential for serology to
estimate malaria incidence by testing small numbers of participants
from communities with varying exposure, actual participants were
sampled to represent testing 20 or 100 individuals from a commu-
nity, with a mean observed incidence ranging from 0.5 to 4.0 cases
per person-year. Mean predicted incidence was calculated using
serology data from the same individuals in each sampled commu-
nity. These simulations indicated that measuring antibody responses
to a few antigens in a small subset of a community has the potential
to provide accurate data on exposure (Fig. 6).
A third use of individual-level estimates of exposure obtained

from a serologic assay would be to identify heterogeneity in re-
cent exposure within a community. Household global positioning

system (GPS) coordinates were collected for each participant in
Kanungu, and elevation data for each household were used as a
proxy for malaria exposure. In Kanungu, elevation was significantly
correlated with the substantial variation in monthly household fe-
male Anophelene catches (P < 0.001 for Spearman’s correlation),
with households at lower elevations in the north of the district
having higher numbers of mosquitoes driving malaria trans-
mission (Fig. 7). Mean mosquito counts were significantly higher
in 36 households below 1,100 m compared with 35 houses above
this elevation (7.8 vs. 2.0; P < 0.001 for Mann–Whitney test).
Each individual’s malaria incidence in the last year—as mea-
sured by passive surveillance—followed a geographic pattern
that was also significantly correlated with household elevation
(P < 0.001 for Spearman’s correlation), with measured incidence
significantly higher among participants living in houses below vs.
above 1,100 m (2.2 vs. 0.8 cases per person-year; P = 0.001 for
Mann–Whitney test). Similarly, predicted incidence in the last
year—based on responses to six antigens from a single cross-
sectional sample from each individual—correlated well with
household elevation (P < 0.001 for Spearman’s correlation) and
was able to detect geographic heterogeneity in exposure, predicting
1.4 vs. 0.9 cases per person-year in houses below and above 1,100 m,
respectively (P = 0.005 for Mann–Whitney test). Predictions of
incidence based on serology correlated more tightly with eleva-
tion than observed incidence measurements, possibly because an
individual’s incidence of malaria is confounded by the interplay
between exposure and immunity (Fig. 7B). Although accurate

Fig. 3. Relationship between prediction accuracy and antibody responses to
the number of Pf antigens included in the prediction model. The y axis in-
dicates accuracy of cross-validated predictions measured as R2 or percentage
of variance explained in the outcome being predicted. (Left) Models pre-
dicting days since last infection used baseline microscopy results and anti-
body response data to 0 (microscopy only) to 30 antigens. (Right) Models
predicting malaria incidence in the last year used each participant’s age and
antibody response data to 0 (age only) to 30 antigens. Antibody responses
selected based on their ability to predict the outcome in the training set
(selected) performed better than antigens chosen at random (random), de-
spite selection and prediction being performed on independent sets of
samples. Antibody responses evaluated as continuous variables performed
better than binary responses for days since infection but similarly for in-
cidence predictions.

Fig. 4. Mean intensity of antibody responses for participants grouped by
exposure outcome: (A) days since last infection (0 to <30 d, n = 59; 30 to <90 d,
n = 42; 90–365 d, n = 43; no Pf infection detected in the last year, n = 42) and
(B) malaria incidence in the last year (0, n = 47; 1 to <2, n = 39; 2 to <5, n = 42;
5 to <8, n = 34; ≥8, n = 24). (Right) Responses against the top 10 antigens
selected for each exposure metric were highly immunogenic and showed more
consistent associations with exposure by design than (Left) overall responses.
Spearman’s ρ values for correlations between the exposure metric and an in-
dividual’s mean antibody response to the set of antigens indicated are pre-
sented in each plot.
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fine-scale assessments of geographic heterogeneity require denser
sampling than was carried out here, these results indicate that
individual incidence predictions from serology may be used to
map out the heterogeneous distribution of malaria across a
community.

Performance of Selected Antigens in a Different Population.We used
previously published array data from 94 Malian children (70) ages
2–7 y old to determine whether the antigens selected in our
Ugandan cohorts could also estimate an individual’s exposure to
malaria in a different population. Of note, this separate validation
set represents individuals with different genetic backgrounds liv-
ing in a different epidemiologic setting comprised of highly sea-
sonal malaria transmission. Only plasma samples collected at the
end of the 6-mo malaria season were included in the analysis. The
Mali array contained 4 of the top 10 antigens (PF3D7_0711700,
PF3D7_0800300, PF3D7_0501101.1, and PF3D7_0731600) in-
ducing responses best able to predict days since last infection in
Ugandan children. These four antigens were also highly immu-
nogenic in Malian children (Fig. 8A). Responses to these antigens
were more closely associated with days since infection than
overall responses (r = −0.39, P < 0.001 vs. r = −0.24, P = 0.02 for
Spearman’s correlations between days since infection and mean
response to top vs. all antigens), similar to what was seen in
Ugandan children and providing additional support for the gen-
eralizability of our approach. Estimated days since last Pf in-
fection obtained from linear models using microscopy data and
responses to one antigen (PF3D7_0711700) as predictors were
able to classify an individual as being infected within the last 30 or
90 d (Fig. 8B). Note that, because 96% of this cohort was infected
in the prior year, we did not classify individuals by whether they
were infected within the last 365 d.

Discussion
With the limited resources available for malaria control and
elimination, it is imperative to be able to accurately and effi-
ciently evaluate malaria exposure in different communities, so

that these resources can be used carefully and in a targeted way.
In this study, we show the utility of an innovative approach to
identify a number of promising and novel serologic biomarkers
of recent Pf exposure. Detailed individual histories of Pf in-
fection obtained from cohort participants were used to select the
most informative antibody responses to hundreds of antigen
candidates using data-adaptive statistical models. Our results,
confirmed through rigorous cross-validation, show that accurate
predictions of an individual’s exposure history can be produced
by measuring antibody responses to just a few Pf antigens se-
lected using this approach. Evaluation in multiple scenarios
suggests that these serologic data are capable of providing
precise and accurate estimates of exposure for individuals and
communities.
Serologic surveys have been used to estimate Pf exposure for

over 40 y. With the push toward elimination and the advent of
standardized assays and analytical approaches, such as evaluating
rates of seroconversion to specific Pf antigens, serology has

Table 2. Most informative serologic markers of malaria exposure

Rank Gene identification Description

Antigens predicting days since an
individual was last infected with Pf
1 PF3D7_1002000* Plasmodium exported protein, hyp2
2 PF3D7_0402400 Plasmodium exported protein, GEXP18
3 PF3D7_1106300* Exonuclease, putative
4 PF3D7_0711700 Erythrocyte membrane protein 1
5 PF3D7_0800300* Erythrocyte membrane protein 1
6 PF3D7_0501100.1 Heat shock protein 40, type II
7 PF3D7_0423700* Early transcribed membrane protein 4
8 PF3D7_1020800* Dihydrolipoamide acyltransferase component E2
9 PF3D7_0731600* Acyl-CoA synthetase
10 PF3D7_1002100 PF70 protein, PF70

Antigens predicting an individual’s
malaria incidence in the last year
1 PF3D7_1002000* Plasmodium exported protein, hyp2
2 PF3D7_1020800* Dihydrolipoamide acyltransferase component E2
3 PF3D7_0731600* Acyl-CoA synthetase
4 PF3D7_0532100 Early transcribed membrane protein 5
5 PF3D7_0801000 Plasmodium exported protein
6 PF3D7_0304600 CSP
7 PF3D7_0206800 MSP2
8 PF3D7_0800300* Erythrocyte membrane protein 1
9 PF3D7_1106300* Exonuclease, putative
10 PF3D7_0423700* Early transcribed membrane protein 4

*Antigen was within the top 10 for predicting both days since last infection and malaria incidence in the last year.

Fig. 5. ROC curves for predictions of days since infection using responses to
three antigens and microscopy data were able to accurately classify whether
an individual was infected within the last 30, 90, or 365 d as indicated by the
high area under the curve (AUC) values. Solid lines represent SuperLearner
predictions, in which both antigen selection and model fitting were cross-
validated; dashed lines represent predictions from linear models, in which the
included antigens (PF3D7_1002000, PF3D7_0402400, and PF3D7_1106300)
were preselected as the top three most predictive of days since last infection.
An AUC of 0.5 indicates a classifier that performs no better than random,
whereas an AUC of 1 indicates a perfect classifier.
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recently become more attractive as an epidemiologic tool (22, 36,
39, 41–53, 71, 72). The antigenic targets for such assays have
been mostly limited to a small set of readily available recombinant
proteins, generally selected for recognition by high titers of an-
tibodies in immune individuals and not for their ability to provide
quantitative information regarding exposure (73, 74). Recent
studies have evaluated responses to multiple antigens simulta-
neously, suggesting that certain responses may be more informative
of exposure in particular settings (58, 75, 76). A fundamental
distinction between prior efforts and the approach taken in this
study is that, here, recent Pf exposure in individuals was used to
identify the most informative antibody responses among hun-
dreds of candidates. This approach allowed for accurate quan-
titative calibration of the relationships between identified responses
and independent measures of exposure in individuals in contrast
to the coarser population-level relationships established by
existing serology assays. The power of obtaining these individual-
level estimates is illustrated by their ability to accurately identify
individuals with infection in the recent past, with recent defined
by relevant thresholds spanning 1 y, obtain precise estimates of
malaria incidence in a community from cross-sectional samples
from as few as 20 individuals, and accurately estimate hetero-
geneity in recent exposure within a community using data from a
single time point.
A commonly perceived limitation of the protein array plat-

form used in this study is the use of an Escherichia coli-based
cell-free expression system, in which some conformational epi-
topes may not be presented because of improper protein folding.
Although this limitation may have resulted in the lack of iden-
tification of some potential biomarkers, this concern is largely
mitigated by the ability to screen hundreds of responses simul-
taneously, many of which likely provide similar information.
Indeed, the identification of antigen targets that may be sub-
sequently easier to produce is of potential benefit. Furthermore,
although some potential biomarkers may have been missed, our
results suggest that increasing the number of antigens beyond a
few good candidates may be unnecessary. Of note, the array used
in this study also included purified, validated recombinant pro-
teins for commonly used antigens, such as AMA1 and MSP1,

at a wide range of dilutions, and none of these constructs were
identified as among the most informative in our study.
Importantly, although the approach for discovery outlined

here should be generalizable to a broad range of exposure set-
tings and age ranges, the specific serologic biomarkers identified
may not be as useful in other transmission contexts. Additional
evaluation is needed to assess whether the serologic biomarkers
identified here are cross-reactive with other Plasmodium species
(38) and whether the genetic background of parasites in certain
areas may affect responses to selected antigens, which are cur-
rently based on the Pf3D7 strain reference sequence (77). In-
terestingly, among the top 38 antigens predictive of exposure, 7
map to PfEMP1 proteins, and at least 5 more are predicted to be
exported (Tables S1 and S2), indicating that genetic variation
between Pf strains may be an important factor to consider.
However, consistent with the previously published finding that
intracellular domains of PfEMP1 proteins are more highly rec-
ognized by antibodies than hypervariable extracellular fragments
(78), all seven PfEMP1 peptide fragments selected in our cohorts
correspond to highly conserved intracellular domains. It will be
of interest in future studies to evaluate the relative contribution
of measuring responses to different variants of particular anti-
gens in evaluating exposure (77).
Additionally, dynamics of antibody acquisition and mainte-

nance vary based on exposure intensity and age; thus, the degree
to which some serologic biomarkers predict exposure will likely
vary in these contexts (39, 57, 75, 79). Our study only evaluated
participants ages 3–7 y old living in two areas of Uganda with
moderate or high transmission and ages 2–7 y old living in an
area with intense seasonal transmission in Mali. The Pf

Fig. 7. (A) Geographic heterogeneity in Pf exposure is captured by serologic
predictions of incidence. (Left) Average monthly counts of female Anophe-
line mosquitos, (Center) observed malaria incidence over 1 y, and (Right)
cross-validated predictions of incidence using antibody responses to six an-
tigens taken at a single time point are plotted for each study household in
Kanungu, Uganda, with colors indicating the tertile for each household.
Some households contain more than one included study participant; in these
cases, the household mean is plotted for observed and predicted incidence.
Small black dots represent households that were not sampled. (B) Scatter-
plots of (Left) household elevation (a proxy for Pf exposure) vs. mean mos-
quito counts and (Center) observed or (Right) predicted malaria incidence in
the last year. All three metrics are significantly associated with elevation (P <
0.001 for Spearman’s correlation). Individuals residing in households at low
elevations but having no episodes of clinical malaria in the last year are likely
highly exposed and immune; serologic predictions of incidence suggest that
these individuals were, in fact, exposed to Pf.

Fig. 6. Representative communities with population mean malaria in-
cidences ranging from 0.5 to 4.0 episodes per person-year were created by
subsampling actual study participants after Poisson distributions. Analyses of
actual participant data for individuals assigned to each of these simulated
communities showed that serologic analysis of a small number of individuals
produced accurate predictions of mean incidence for the community. Pre-
dicted community incidences were aggregated from cross-validated esti-
mates for each individual, which were produced using antibody responses to
six antigens. More details are available in Materials and Methods.
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biomarkers identified here are likely to be of value in similar
settings but require additional validation in these settings
and age groups and others. In particular, assessment of se-
rologic responses in communities before and after imple-
mentation of malaria control measures will be needed to
validate the utility of responses in evaluating the impact of
these interventions. Replicating the approach outlined here
in a broader array of epidemiologic settings will provide an
efficient means of identifying a set or sets of biomarkers
appropriate across these contexts.
If the validation approaches above can be confirmed, addi-

tional steps are then needed to translate the novel biomarkers
identified here and in future studies into high-throughput sero-
logic assays for routine surveillance (38). Detailed characteriza-
tion of the kinetics of identified responses within individuals over
time will enable development of more tailored and precise sta-
tistical models to estimate recent exposure in contrast to the
more flexible techniques used here for biomarker identification
(80–83). Target antigens will need to be expressed as standard-
ized, purified reagents to allow for consistent measurement of
responses. Finally, simple, inexpensive assay platforms (e.g.,
based on ELISA or portable lateral flow devices) will need to be
optimized to allow serologic assessments of malaria exposure to
be performed on field samples, such as dried blood spots or
whole blood obtained from finger pricks in appropriate settings.
Simple assays derived from such an approach have the potential
to generate rich epidemiologic surveillance data that would be
widely accessible to malaria control programs.
The potential to obtain more accurate estimates of Pf expo-

sure from small sample sizes makes the already promising use of

serology as a key malaria surveillance tool more attractive. In
areas requiring wide-scale malaria control, collecting national
serologic data (e.g., as part of a malaria indicator survey) could
improve targeting of control interventions to broad areas with
the highest exposure risk. In areas of lower transmission, focal
surveys could allow for interventions targeted to smaller-scale
hotspots at the level of villages or groups of households (69, 84).
In settings nearing malaria elimination, serology could identify
individuals infected in the recent past, allowing identification of
geographic or demographic risk factors and ultimately, certifying
that elimination has occurred (85, 86). Finally, repeated evalu-
ation of recent exposure over time could be used to assess the
impact of control interventions in reducing exposure and detect
reintroduction of Pf transmission after local elimination.
In addition to their utility in surveillance, serologic estimates of

exposure can provide a valuable research tool. Because it is dif-
ficult to measure protection against malaria without knowing the
underlying rate of infection, studies of naturally acquired or vac-
cine-induced immunity are confounded by heterogeneous Pf ex-
posure (87–91). The ability to estimate an individual’s recent
exposure at the beginning of a study and/or rates of infection
during follow-up would be useful in assessing protection. To be
valuable in this context, consideration would need to be taken to
identify biomarkers of exposure not directly involved in mediating
immune protection or not strongly influenced by blood-stage im-
munity. Additionally, serologic outcomes may provide a cost-
effective means for measuring the effect of new interventions
on a study population, especially when it is not practical to
perform detailed, continuous clinical or parasitological sur-
veillance of all participants. Given the broad utility of serology,
identifying the serologic biomarkers that provide the most ac-
curate estimates of exposure seems a worthwhile investment.

Materials and Methods
Ethical Approval.Written informed consent was obtained from the parents or
guardians of all study participants. Ethical approval was obtained from the
Uganda National Council of Science and Technology and the Institutional
Review Boards of the University of California, San Francisco, Makerere
University, and the Centers for Disease Control and Prevention. The Tororo
Child Cohort (TCC) is registered at ClinicalTrials.gov (NCT00527800).

Study Sites, Participants, and Clinical End Points. Samples for this investigation
were obtained fromUgandan children enrolled in either the TCC Study or the
Kanungu site of the Program for Resistance, Immunology, and Surveillance of
Malaria Cohort Study. For all children included in this analysis, follow-up was
complete for the year before sample collection. The details of these two
longitudinal studies have been described elsewhere (92, 93). Briefly, the TCC
Study was conducted from 2007 to 2012 in Tororo, a rural district in
southeastern Uganda with intense perennial transmission (59, 94), where
children were enrolled in infancy and followed until 5 y of age. For this
study, we included all children born to HIV-negative mothers who remained
in the study until 4 y of age and for whom a plasma sample within 4 mo of
the participant’s fourth birthday was available (all collected from November
of 2010 to November of 2011). The Program for Resistance, Immunology,
and Surveillance of Malaria Study took place from 2011 to 2013 in the Kihihi
subcounty of Kanungu, a rural district in southwestern Uganda with mod-
erate seasonal transmission (93). For this study, we included all children in
the cohort who were 3–7 y of age after 1 y of follow-up and had plasma
available at this time point (July of 2012 to September of 2012). For
Kanungu participants, GPS coordinates of households were recorded, and
female Anophelene mosquito counts for each house were determined by
monthly Centers for Disease Control and Prevention light trap counts (59).

Children at both Ugandan study sites were followed for all medical
problems with continuous passive surveillance. Children who presented with
a documented fever (≥38.0 °C) or history of fever in the previous 24 h had
blood obtained by finger prick for a thick smear. If the thick smear was
positive for asexual Pf parasites, the patient was diagnosed with malaria and
given artemisinin-based combination therapy. In addition, active surveil-
lance for parasitemia by thick smear was performed monthly in Tororo and
one time every 3 mo in Kanungu; children were not treated for parasitemia
if asymptomatic. For each participant, malaria incidence in the previous year

Fig. 8. Plasma samples from Malian children were used to probe micro-
arrays that contained 4 of the top 10 antigens inducing responses in
Ugandan children that were predictive of days since last infection. (A) Mean
intensity of antibody responses in Malian participants grouped by days since
last infection (0 to <30 d, n = 47; 30 to <90 d, n = 41; >90 d, n = 6). (Right)
Responses to antigens within the top 10 selected in Ugandans were highly
immunogenic in Malian participants and also showed more consistent as-
sociations with exposure than (Left) overall responses. Spearman’s ρ for
correlations between an individual’s days since last Pf infection and mean
antibody response to the set of antigens indicated are presented in each
plot. (B) ROC curves for predictions of days since infection from linear models
using one antigen (PF3D7_0711700) and microscopy data were able to
classify whether an individual from Mali was infected within the last 30 or
90 d. AUC, area under the curve.
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was calculated as the number of symptomatic malaria episodes occurring
365 d before sample collection; 14 d of follow-up were removed from total
time at risk after every treatment with antimalarial medication. Days since
last infection were calculated as the number of days before the date of
plasma collection when Pf parasites were most recently detected, if at all, in
the prior year. When an individual’s last detected infection was asymp-
tomatic and a negative smear was obtained in the visit immediately before,
a date falling directly between these two visit dates was used to account for
differences in the active surveillance sampling frames between the two sites.
For participants who were infected within the 2 wk before plasma collec-
tion, recorded days since last infection were set to 14 to account for the
boosting of antibody responses immediately after an infection.

Protein Microarray Chip Fabrication, Probing, and Data Normalization. In total,
856 antigens corresponding to 520 unique Pf proteins were selected for
inclusion based on associations with exposure and immunogenicity in larger
microarray studies conducted at the University of California, Irvine (70, 95,
96); 40 of these antigen probes were dilutions of 12 unique purified Pf
proteins (97, 98), but none of these probes were selected as informative
biomarkers of exposure in any analysis. ORFs from Pf3D7 reference se-
quences were derived from the Plasmodium genomic sequence database
(www.plasmodb.org) for the remaining 816 recombinant protein probes on
the array. Fabrication of protein microarrays involved (i) PCR amplification
of each complete or partial Pf ORF, (ii) in vivo recombination cloning in
E. coli, (iii) in vitro transcription/translation, and (iv) microarray chip printing.
Peptide antigens ranged from 50 to 1,013 aa in length, with a median of 572
aa in length. Processing of plasma samples, which included a 1/200 dilution
in buffer containing E. coli lysate, and production and probing of arrays to
quantify total IgG intensities (ODs) have been described previously (70).

Data analyses were performed with R 3.1.0 (99). After subtracting slide
background, mean empty E. coli vector (no DNA, where an empty plasmid
vector was placed into the transcription/translation reaction) intensity was
subtracted from each spot to adjust for any cross-reaction effects from the
E. coli vector used to print the arrays. Next, intensities for each spot underwent
inverse hyperbolic sine transformation to yield a Gaussian distribution while
avoiding the normalization properties of the variance stabilizing normali-
zation. Because individual microarray slides or sample pads might be brighter or
darker than others during scanning, leading to biased estimates of antibody
intensity, data were normalized after transformation using the robust linear
model (RLM) (100, 101). Essentially, a robust statistical model using the “sand-
wich estimator” was fit to the data to estimate fixed effects for each slide and
each pad based on the negative (no DNA) and positive (human IgG) control
probes. Estimates of the slide and pad effects from the RLM were then sub-
tracted from each probe’s intensity to remove any variation solely caused by
differences among the slides or pads. After RLM normalization, the data were
further normalized using a generalized additive model to minimize nonlinear
differences in antibody intensity detected between two batches of slides pa-
rameterized on a third batch of slides containing a subset of samples from the
first two batches. Visual inspection of principle components on samples from all
three batches indicated that normalized results showed no appreciable batch
effect. Only antigen fragment spots for which transformed and normalized in-
tensity values were higher than 2 SDs above the mean of transformed and
normalized no DNA control spot intensities were analyzed further. Normalized
microarray data are found in Dataset S2.

Breadth and Intensity of Antibody Responses. In total, 201 nonreactive Pf
antigens, for which fewer than 10% of Ugandan children had responses at
least 1 SD above the mean intensity of 28 Pf-naïve adults from North
America, were removed from additional analysis. The 655 reactive Pf anti-
gens included in analyses are listed in Dataset S1. Antibody response data
were dichotomized, with antibody intensities at least 2 SDs above the mean
intensity of Pf-naïve controls considered to be reactive. For each participant,
the breadth of the antibody response was calculated as the proportion of
reactive responses against 655 Pf antigens included in the analysis. Addi-
tionally, the mean intensity of the antibody response against each of 655
reactive antigens was calculated for each participant. Bonferroni-corrected
Mann–Whitney tests were used to compare mean breadth and intensity of
response among participants stratified by days since last infection.

Identification and Evaluation of Responses Informative of Exposure. To eval-
uate how informative responses to each Pf antigen were at estimating recent
malaria exposure both alone and combined, we modeled the ability of these
antibody responses to predict two different metrics of an individual’s Pf ex-
posure: (i) days since last infection and (ii) incidence of malaria in the prior
year. Separate models estimating each log-transformed outcome were fit

using the SuperLearner algorithm (87, 102–104), which was chosen to balance
two requirements: (i) that relationships between antibody responses and Pf
exposure be allowed to reflect natural, possibly nonlinear relationships as
closely as possible, thus best reflecting the information present in antibody
responses, and (ii) that the entire process was fully automated, specifying the
modeling procedure a priori to allow for cross-validation and avoiding in-
troduction of bias created by manually choosing the best-fitting model pro-
cedure. In addition to antibody responses to 655 reactive antigens, microscopy
at the time of sample collection was included as a covariate in models pre-
dicting log days since last infection, and age of participants was included as a
covariate in models predicting log malaria incidence in the last year.

The SuperLearner is a flexible, data-adaptive ensembling approach that
minimizes assumptions by allowing a potentially large number of candidate
models to be evaluated, and it makes predictions based on the weighted
average of estimates from each component model. Nested within this
framework, top antibody responses were selected before model fitting. The
number of antibody responses selected was prespecified for each model:
models that incremented between selecting 1 and 30 responses were fit to
evaluate the additional information obtained by allowing responses to a larger
number of antigens to be chosen. Responses to top antigenswere chosen using
hierarchical criteria: first, lasso regression (105) was used to identify one-third
of the responses chosen to work combined to predict exposure; second, the
remaining responses were selected by iteratively choosing the best response
as ranked by variable importance measures from random forest regression
(106) and then choosing the best response as ranked by P values from
Spearman’s correlations with exposure. After feature selection, the Super-
Learner predicted exposure (either log days since last infection or log in-
cidence in the prior year) for each individual using a weighted average of five
models: conventional multiple regression with all selected covariates in the
model, lasso regression, random forests, support vector machines (107), and
neural networks (108). Weights for each component model in the Super-
Learner were calculated by nonnegative least squares regression, minimizing
the cross-validated risk of the final estimator (103, 104).

To produce unbiased estimates of prediction accuracy, the entire Super-
Learner process—including feature selection and model fitting—was auto-
mated and cross-validated; 20-fold cross-validation was used, in which the
dataset was divided into 20 mutually exclusive subsets of as nearly equal size
as possible, and 19 subsets were then used for training the estimators, with
predictions made on the hold-out validation set used to assess the perfor-
mance of these estimators. This process of subsetting the data into different
training and validation sets was repeated a total of 20 times to produce cross-
validated predictions of the exposure metric for each individual. Note that,
because the feature selection procedure was performed 20 different times as
part of each cross-validation process, it is possible that different subsets of
individuals had models fit using responses to different antigens selected as
covariates. SuperLearner cross-validated predictions of exposure for each in-
dividual were used as the primary means by which we evaluated prediction
accuracy and comprise all predictions in the results unless otherwise noted
(e.g., where illustrating the prediction accuracy of a specific antibody re-
sponse). R2 values to evaluate prediction accuracy for each of two exposure
metrics in individuals were calculated as R2 = 1−

PN
i−1ðyi − ŷiÞ2=

PN
i−1ðyi − yÞ2,

where yi represents the actual value of the exposure metric (days since in-
fection or incidence of malaria) for individual i, and ŷi represents the cross-
validated prediction for that individual.

ROC curves (109) were used to evaluate the performance of models for
classifying whether an individual was infected within a given time period.
Correlations between entomologic data and actual or predicted incidence
were determined using Spearman’s rank correlation. After stratifying
Kanungu participants’ households by elevation, Mann–Whitney tests were
used to compare mean female Anophelene catches, incidence, and incidence
predictions from serology in households at low vs. high elevation.

To estimate the precision and accuracy of community estimates of ex-
posure at various sample sizes, 5,000 representative communities were cre-
ated by subsampling actual study participants. Each individual participant
had a measured incidence and a cross-validated prediction of incidence
generated from a SuperLearner model using six antibody responses as de-
scribed above. Participants were sampled with replacement, such that true
individual incidences within the simulated community followed a Poisson
distribution and the simulated communities had a range of population mean
malaria incidences (0.5–4.0 episodes per person-year). Mean predicted in-
cidence for each simulated community was calculated by averaging in-
cidence predictions for each individual within a simulated community.

Previously published clinical and microarray data fromMalian participants
(70) were used to evaluate the performance of selected responses in a dif-
ferent study population. Only plasma samples from participants ages 2–7 y
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old collected at the end of the 6-mo malaria season were included in this
secondary analysis. Participants were followed for ∼8 mo before sample
collection. Microarray data were normalized as previously described (70),
and linear models were used to evaluate the ability of responses selected in
Ugandan participants to estimate exposure in the Malian population.
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